Sensors and Materials, Vol. 17, No. 5 (2005) 249–257 MYU Tokyo

S & M 0603

Noninvasive Optical Transcutaneous pCO₂ Gas Sensor

Do Eok Kim^{*}, Hwan Joo Lee, Eun Jong Cha¹, Dae Hyuk Kwon², Seung Ha Lee³ and Shin Won Kang³

Department of Electronic Engineering, Kyungpook National University, Korea ¹Department of Biomedical Engineering, Chungbuk National University, Korea ²Department of Electronic and Information Engineering, Kyungil University, Korea ³School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu 702-701, Korea

(Received August 21, 2004; accepted December 5, 2004)

Key words: pCO2, noninvasive, NDIR, Beer-Lambert's law, Henry's law, pyroelectric

This paper presents an optical transcutaneous pCO_2 gas sensor and analyzer using a noninvasive method. The basic principle of the pCO_2 measurement method adapts Beer-Lambert's law and the embodied system uses the nondispersive Infrared (NDIR) method. Since CO_2 gas reacts to a 4.3 µm wavelength, this wavelength is selected using an optical filter, and used energy decrease by molecule oscillations. The CO_2 concentration is then measured by a mass flow controller (MFC) using basic steps, instead of collecting pCO_2 gas by inflicting heat on the outer skin. The measuring system consists of an IR lamp, optical filter, optical reaction chamber, pyroelectric sensor, and a signal processing part. To make the sensor system portable, the length of the optical reaction chamber is minimized to 1 mm using a Si wafer based on MEMS technology. When CO_2 gas is injected into the optical reaction chamber, a result of 4.3 mV was confirmed when using a photoreaction path of 1 mm with a CO_2 gas reaction. The response time of the system was within 2 s, which we consider to be relatively rapid.

*Corresponding author, e-mail address: dekim@ee.ac.kr