Sensors and Materials, Vol. 17, No. 8 (2005) 441–451 MYU Tokyo

S & M 0622

Determination of Thermal Expansion Coefficient of Thermal Oxide

Chingfu Tsou*, Yu-Sheng Huang, Hung-Chung Li and Teng-Hsien Lai

Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan

(Received December 5, 2004; accepted September 13, 2005)

Key words: thermal expansion coefficient, thermal oxide film, microbridge, buckling deformation, finite element analysis

An accurate thermal expansion coefficient (α) of a thin film is important in the design of microelectronic devices and microsystems. In this research, we present the use of microbridge buckling deformation caused by residual stresses to determine the α of a thermal oxide (SiO₂) film. The determination of α is supported through experimental means and the analysis by finite-element method (FEM) of the buckling profiles of a microbridge. Moreover, to obtain the α of a thermal SiO₂ film accurately, a nanoindentation system and an optical microscope with a high-resolution gauge were used to determine the elastic modulus of the thermal SiO₂ film and the α of the silicon substrate, respectively. By combining micro-electro-mechanical systems (MEMS) technologies and FEM with thermomechanical analysis, the α of the thermal SiO₂ film was calculated. The measured α of the thermal SiO₂ film at room temperature is $0.24 \times 10^{-6/\circ}$ C with a standard deviation of $0.02 \times 10^{-6/\circ}$ C.

*Corresponding author, e-mail address: cftsou@fcu.edu.tw