Cell Adhesion Control Using Nanostructure Fabricated on Polymer Surface

Shin-ichiro Fujii****, Makiko Goto ${ }^{1}$, Soichi Yabuki, Takehiko Kitamori ${ }^{1}$ and Kiichi Sato ${ }^{2}$
Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
${ }^{1}$ Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
${ }^{2}$ Department of Applied Biological Chemistry, School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan

(Received March 20, 2007; accepted April 20, 2007)
Key words: nanostructure, cell adhesion, morphology, PDMS, biosensor

We studied the adhesion control of cells cultured on nanometer-scale patterned poly (dimethylsiloxane) (PDMS) structures with various shapes. Although cell cultures on microstructures and nanostructures with random shapes have been studied so far, cell cultivation on well-defined nanopatterned PDMS has not been reported. PDMS was molded into stripes and pillars with nanometer- or micrometer-scale widths using a patterned glass template. Human stomach cancer cells (Kato-III) were cultured on the nanopatterned PDMS sheets. The cells adhered to the nanometer-scale stripe and became elongated as structures. They extended along the direction of the nanostructures. When the surface was thickly coated with a protein (e.g., extracellular matrix (ECM) gel), cell extension was not observed. Cultured cells selectively recognized the direction of the nanostructure. The findings in this work could lead to future developments in whole-cell-based biosensors.

[^0]
[^0]: *Corresponding author: e-mail: s-fujii@aist.go.jp
 ${ }^{* *}$ Present address: National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 3, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan

