Sensors and Materials, Vol. 19, No. 6 (2007) 365–376 MYU Tokyo

S & M 0689

Effects of Electrode Materials on CO₂ Sensing Properties of Solid-Electrolyte Gas Sensors

Takeo Hyodo^{*}, Tadashi Furuno¹, Shizuko Kumazawa², Yasuhiro Shimizu and Makoto Egashira

Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan ¹Graduate School of Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan ²Devices Development Center, TDK Corporation, Ichikawa-shi, Chiba 272-8558, Japan

(Received July 7, 2007; accepted August 1, 2007)

Key words: CO₂, humidity, solid electrolyte, potentiometric sensors

The effect of oxide powder addition to a carbonate auxiliary electrode on the CO_2 sensing properties of $Na_3Zr_2Si_2PO_{12}$ (NASICON) gas sensors has been investigated. CO_2 was adsorbed on the surfaces of most of the oxides tested after treatment at 400°C in dry air, while the coexistence of H₂O reduced the amount of adsorbed CO_2 . However, the amount of CO_2 adsorbed on the oxides was not correlated with the CO_2 response of the NASICON sensors equipped with an electrode containing the oxide. The CO_2 response increased and the humidity cross response decreased with a decrease in the resistance of the oxides. This result suggests that the strict conductivity control of auxiliary electrodes is an important factor for achieving high-performance potentiometric CO_2 sensors.

*Corresponding author: e-mail: hyodo@nagasaki-u.ac.jp