Sensors and Materials, Vol. 20, No. 5 (2008) 211–219 MYU Tokyo

S & M 0719

Gas Sensing Characteristics of Nanocrystalline Ba_{0.5}Sr_{0.5}MoO₄ Thick Film Prepared by Sol-Gel Method

Mohammad Reza Vaezi

Advanced Materials Research Center, Materials and Energy Research Center, Karaj, Iran

(Received December 24, 2007; accepted July 18, 2008)

Key words: thick-film gas sensor, Ba_{0.5}Sr_{0.5}MoO₄, sensitivity, doping

Thick-film gas sensors were fabricated from nanocrystalline pure and doped $Ba_{0.5}Sr_{0.5}MoO_4$ powders; fine and homogeneously sized powders were prepared using chemical methods such as sol-gel technique. X-ray diffraction (XRD) has confirmed the formation of nanocrystalline $Ba_{0.5}Sr_{0.5}MoO_4$ structure (JCPDS 30–157) for sol-gel powders after annealing. The results obtained from XRD and transmission electron microscope (TEM) show that the powders have nanocrystalline structure and the mean particle sizes of $Ba_{0.5}Sr_{0.5}MoO_4$ powders with and without CuO are approximately 33 and 21.8 nm, respectively. The gas sensing measurements indicate that the $Ba_{0.5}Sr_{0.5}MoO_4$ sensors show good response to H_2S and poor response to other reducing gases such as H_2 , LPG, and CO. The sensitivity was improved by the incorporation of CuO as an additive in $Ba_{0.5}Sr_{0.5}MoO_4$. The maximum sensitivity was obtained for $Ba_{0.5}Sr_{0.5}MoO_4$ with 4 wt% CuO decreases the operating temperature from 250 to 200°C while increasing the sensitivity to H_2S .

*Corresponding author: e-mail: vaezi9016@yahoo.com