Sensors and Materials, Vol. 21, No. 3 (2009) 155–166 MYU Tokyo

S & M 0756

Detection of Wound Pathogen by an Intelligent Electronic Nose

Fengchun Tian¹, Xuntao Xu^{1,2,*}, Yue Shen³, Jia Yan¹, Qinghua He³, Jianwei Ma¹ and Tao Liu¹

 ¹College of Communication Engineering, Chongqing University, Chongqing, 400044, China
²Mianyang Vocational and Technical College, MianYang, SiChuan, 621000, China
³Department of Orthopedic and Traumatic Surgery, Center for War Wound and Trauma of PLA, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China

(Received October 17, 2008; accepted February 2, 2009)

Key words: electronic nose, wound infection, probabilistic neural networks, wavelet transform

A new method of detecting wound pathogens based on an electronic nose was proposed and realized. A gas sensor array consisting of six metal oxide gas sensors and one electrochemical gas sensor was used to identify seven species of pathogens common in wound infection. By selecting the wavelet transform coefficients preferentially with a scatter matrix and using the mean of the selected coefficients as the feature, the identification accuracies of the probabilistic neural network classifier for the seven species of pathogens all reached 100%. The new feature extraction method showed high performance in the rejection of gas sensor drift. Theoretical analysis and experimental results indicate that this method can be used to accurately identify the common pathogens present in wound infection and can be further used in the real-time detection of wound infection.

*Corresponding author: e-mail: myxxtao@126.com