Sensors and Materials, Vol. 21, No. 7 (2009) 373–383 MYU Tokyo

S & M 0777

Fabrication of Carbon Nanotube Via Interconnects at Low Temperature and Their Robustness over a High-Density Current

Shintaro Sato^{1,2,3,*}, Akio Kawabata^{1,2,3}, Tatsuhiro Nozue¹, Daiyu Kondo^{1,2,3}, Tomo Murakami¹, Takashi Hyakushima¹, Mizuhisa Nihei^{1,2,3} and Yuji Awano^{1,2,3}

¹MIRAI-Selete (Semiconductor Leading Edge Technologies, Inc.), 10-1, Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197, Japan ²Fujitsu Limited, 10-1, Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197, Japan ³Fujitsu Laboratories Ltd., 10-1, Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197, Japan

(Received June 1, 2009; accepted June 8, 2009)

Key words: carbon nanotube, LSI, interconnect, via, growth, low temperature, catalyst, nanoparticle, particle, impactor

We fabricated carbon nanotube (CNT) via interconnects (vertical wiring) and evaluated their robustness over a high-density current. Multiwalled carbon nanotubes (MWNTs) were grown at temperatures as low as 365° C using Co catalyst nanoparticles, which were formed and deposited by a custom-designed particle generation and deposition system. MWNTs were successfully grown in via holes with a diameter as small as 40 nm. The resistance of CNT vias with a diameter of 160 nm was found to be of the same order as that of tungsten plugs. The CNT vias were able to sustain a current density as high as 5.0×10^{6} A/cm² at 105°C for 100 h without any deterioration in their properties.

*Corresponding author: e-mail: sato.shintaro@jp.fujitsu.com