Sensors and Materials, Vol. 22, No. 3 (2010) 101–107 MYU Tokyo

S & M 0792

Detection of Chlorine Gas Using Embedded Piezoresistive Microcantilever Sensors

Timothy L. Porter*, T. Vail¹, A. Wooley¹ and Richard J. Venedam²

Northern Arizona University, Dept. of Physics, Flagstaff, AZ 86011, USA ¹Northern Arizona University, Dept. of Chemistry, Flagstaff, AZ 86011, USA ²National Security Technologies, Las Vegas, NV, 89193, USA

(Received October 1, 2008; accepted October 14, 2009)

Key words: chlorine, microcantilever, embedded

Embedded piezoresistive microcantilever (EPM) sensors may be constructed for various sensing applications. In each application, a custom sensing material that responds volumetrically to the desired analyte is designed. Here, we constructed EPM sensors for chlorine gas (Cl_2) detection. The sensing materials used consisted of polymer matrices combined with NaI crystals. Sensors constructed from a silicone-based matrix exhibited the strongest response to Cl_2 , with detection limits in an outdoor exposure setting of approximately 20 ppm.

*Corresponding author: e-mail: Tim.Porter@nau.edu