Sensors and Materials, Vol. 22, No. 4 (2010) 183–192 MYU Tokyo

S & M 0800

Solid Oxide Amperometric CO Sensor for Monitoring Exhaust Gas from Water Heater

Tatsumi Ishihara^{*}, Phawachalotorn Armonat¹, Rie Kadowaki and Oravan Sanguanruang¹

Department of Applied Chemistry, Faculty of Engineering, Kyushu University Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan ¹School of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

(Received October 16, 2009; accepted April 13, 2010)

Key words: amperometric sensor, CO sensor, LaGaO₃ electrolyte

An amperometric CO sensor using a solid oxide electrolyte was studied and it was found that the oxygen pumping current increased with increasing CO concentration when using Au(10 wt%)/In_{1.9}Sn_{0.1}O₃ and RuO₂(10 wt%)/La_{0.6}Sr_{0.4}CoO₃ as the electrode catalysts and La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O₃ as the electrolyte. Mixed potentials are also observed on this sensor upon exposure to CO, and so changes in oxygen pumping current may be caused by the mixed potentials formed upon exposure to CO. Substitution of Ga in the LaGaO₃ electrolyte with Fe is effective for increasing the sensitivity, and this sensor is almost insensitive to CO₂ and CH₄. As a result, it is expected that this sensor can be used for the detection of CO in exhaust gas from a small gas water heater without a flue line.

*Corresponding author: e-mail: ishihara@cstf.kyushu-u.ac.jp