Sensors and Materials, Vol. 22, No. 8 (2010) 409–416 MYU Tokyo

S & M 0820

Preparation and Performance of Nickel Oxide Films by Ion Beam Sputtering Deposition and Oxidation Annealing

Jing Peng^{1,4}, Zhimou Xu^{2,3,*}, Shuangbao Wang^{2,3}, Quanlin Jie¹ and Cunhua Chen⁵

 ¹Physical Science and Technology Institute, Wuhan University, Wuhan 430072, China
²Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
³College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
⁴College of Sciences, Wuhan University of Science and Technology, Wuhan 430081, China

⁵School of Chemistry, Central China Normal University, Wuhan 430079, China

(Received August 11, 2009; accepted February 5, 2010)

Key words: nickel oxide thin films, ion beam sputtering, oxidation annealing, microstructure

Polycrystalline NiO_x thin films were deposited on quartz substrates by ion beam sputter deposition and oxidation annealing at high temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) morphologies indicate that the as-deposited nickel oxide thin films are flat amorphous nickel or oxides. However, they developed into semiconducting NiO_x thin films during the oxidation annealing process. Four-point probe tests confirmed their sheet resistance and the resistance-temperature relationship. In addition, infrared (IR) measurements were also carried out in the visible spectrum range to study the optical properties of the as-deposited and annealed films. Apparently, the NiO_x films obtained by the new method exihibit properties that are comparable to those of the films formed by other methods. The thin films have potential application as gas sensors.

*Corresponding author: e-mail: xuzhimou2001@yahoo.com.cn