Sensors and Materials, Vol. 24, No. 1 (2011) 31–41 MYU Tokyo

S & M 0867

Sensing Properties of Impedancemetric Solid-Electrolyte NO_x Sensor Using Perovskite-Type Lanthanum Manganite-Based Receptor

Hong-Chan Cho, Shinya Kuramoto, Satoko Takase, Jeong-Hwan Song¹ and Youichi Shimizu^{*}

Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan ¹Department of Information and Electronic Materials Engineering, PaiChai University, Daejeon 302-735, Korea

(Received April 7, 2011; accepted June 16, 2011)

Key words: Impedancemetric, NO_x sensor, solid electrolyte, lanthanum manganite

Solid-state impedancemetric NO_x sensor devices composed of the perovskite-type oxide (La_{0.8} $A_{0.2}$ MnO₃; A = La, Na, K) as a receptor material and a Li_{1.5}Al_{0.5}Ti_{1.5}(PO₄)₃ (LATP) disc as a solid-electrolyte transducer were investigated for the detection of NO_x (NO and NO₂) in the range of 100–500 ppm at 400°C. The lanthanum manganite/LATP-based sensor devices showed NO_x sensing responses that could be divided into two components of resistance and capacitance. While the sensitivities to NO_x were largely affected by the type of receptor material used, the La_{0.8}K_{0.2}MnO₃/LATP-based impedancemetric sensor element showed excellent NO sensing properties. FT-IR measurements revealed that the interaction between NO and La_{0.8}K_{0.2}MnO₃ was the strongest among the receptor materials.

*Corresponding author: e-mail: shims@che.kyutech.ac.jp