Sensors and Materials, Vol. 24, No. 1 (2012) 43–56 MYU Tokyo

S & M 0868

NO₂ and CO₂ Sensing Properties of LISICON-Based Sensor Operative at Room Temperature

Kenji Obata*,1, Shunya Motohi1 and Shigenori Matsushima1,2

¹Department of Materials Science and Chemical Engineering,

Kitakyushu National College of Technology (KCT),

5-20-1 Shii, Kokuraminami-ku, Kitakyushu 802-0985, Japan

²Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (KIT), Kitakyushu Science and Research Park, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan

(Received April 1, 2011; accepted September 26, 2011)

Key words: NO₂ sensor, CO₂ sensor, LISICON, NASICON, indium tin oxide (ITO)

Four types of sensor were fabricated by combining solid-state electrolyte (LISICON or NASICON) disks with sensing electrode materials, such as Au, indium tin oxide (ITO), and auxiliary phase (nitrate or carbonate). Their NO_2 and CO_2 sensing properties were examined under 30% relative humidity (RH) in the temperature range of 30 to 100°C. When the NO₂ sensor was operated in the range of 2 to 7 ppm NO₂ at 30°C, the LISICON sensor attached with ITO-NaNO₂ had the highest sensitivity to NO₂ and the electromotive force (EMF) change was 41.4 mV. At 30°C under 30% RH, the EMF values of the LISICON sensor attached with ITO-NaNO₂ were proportional to the logarithm of NO₂ concentration. Also, when the CO_2 sensor was operated in the range of 250 to 2,500 ppm CO₂ at 30°C, the LISICON sensor attached with ITO-Li₂CO₃-BaCO₃ had the highest sensitivity to CO2 and the EMF change was 20.0 mV. At 30°C under 30% RH, the EMF values of the LISICON sensor attached with ITO-Li₂CO₃-BaCO₃ were correlated linearly with the logarithm of CO₂ concentration. Subsequently, to examine gas selectivity, the NO₂ selectivity of the sensor attached with ITO-NaNO₂ and the CO₂ selectivity of the sensor attached with ITO-Li₂CO₃-BaCO₃ were evaluated at 30°C under 30% RH. As a result, it was found that the LISICON and NASICON sensors attached with ITO-NaNO₂ were fluctuated by the change in CO_2 concentration. On the other hand, although the NASICON sensor attached with ITO-Li₂₂CO₃-BaCO₃ was affected by the NO₂ concentration change, the LISICON sensor attached with ITO-Li₂CO₃-BaCO₃ showed a high CO₂ selectivity. From thermodynamic calculations, it was considered that the chemical instability of NASICON and NaNO₂ under CO₂ led to the degradation of NO₂ gas selectivity in the ITO-NaNO₂-attached sensor, whereas that of NASICON under NO₂ caused the degradation of CO2 gas selectivity in the ITO-Li2CO3-BaCO3-attached sensor.

*Corresponding author: e-mail: obata@kct.ac.jp