Grating-Coupled Surface-Plasmon-Resonance Disc Biosensor for Monitoring Growth of Self-Assembled Monolayer

Jenq-Nan Yih*, Nai-Jen Cheng ${ }^{1}$, Kuo-Chi Chiu ${ }^{2}$, Chih-Ming Lin ${ }^{3}$ and Shu-Jen Chen ${ }^{4}$
Department of Electrical Engineering, Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan, ROC
${ }^{1}$ Institute of Photonics and Communications, Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan, ROC
${ }^{2}$ Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan, ROC
${ }^{3}$ Department of Applied Science, National Taitung University, Taitung 950, Taiwan, ROC
${ }^{4}$ Department of Chemical and Materials Engineering, Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan, ROC

(Received November 5, 2012; accepted February 4, 2013)

Key words: surface plasmon resonance, disc, fluidic channel, polydimethylsiloxane, selfassembled monolayer

We present a grating-coupled surface plasmon resonance (SPR) disc biosensor for obtaining kinetic information of molecular interaction. The grating disc combined with a c-shape fluidic channel is capable of driving a testing solution forward by gravity by turning the disc biosensor. The disc biosensor can react with probe molecules on a particular sensing surface and then the next as time goes by. To demonstrate the ability of the biosensor, a test experiment was performed for monitoring the growth of a self-assembled monolayer (SAM) immobilized on a gold surface. These measured response curves show that the saturation time of the SAM growth, whose thickness is smaller than 2 nm , is roughly 5 h when 1 mM 16 -mercaptohexadecanoic acid (MHDA)SAM is grown on gold at room temperature. The demonstration reveals that the disc biosensor with c-shape fluidic channels can be a promising tool for a kinetic analysis of bimolecular interaction without any external fluid pumping systems.
*Corresponding author: e-mail: jnyih@kuas.edu.tw

