Fabrication and Characterization of \(d_{33} \) Mode
\((1-x)\text{Pb(Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3-x\text{PbTiO}_3\) (PMN-PT)
Energy Harvester

Bin Yang*, Yanbo Zhu, Xingzhao Wang, Jingquan Liu and Chunsheng Yang

National Key Laboratory of Science and Technology on Micro/Nano Fabrication,
Institute of Micro and Nano Science and Technology,
Shanghai Jiao Tong University, Shanghai, 200240, China

(Received January 8, 2014; accepted June 12, 2014)

Key words: \(d_{33} \) mode, energy harvester, bonding and grinding, MEMS

In this manuscript, a \(d_{33} \) mode piezoelectric micro-electromechanical systems (MEMS) energy harvester integrated with silicon proof mass, which is made of composite cantilever beams from a silicon layer and a single crystal PMN-PT thick film, is proposed. The silicon mass is fabricated by the deep-reactive ion etching (DRIE) process to reduce the resonant frequency for a matching ambient source. A PMN-PT film of 15 µm thickness is realized by the hybrid process of wafer bonding and grinding. The experimental results show that this fabricated prototype can generate a maximum output voltage of 1.18 V_{P-P} and corresponding power of 0.139 µW at the resonant frequency of 200 Hz and vibration acceleration of 2 g.

*Corresponding author: e-mail: binyang@sjtu.edu.cn