Sensors and Materials, Vol. 26, No. 8 (2014) 591–598 MYU Tokyo

S & M 1025

Fabrication and Characterization of d_{33} Mode (1-x)Pb(Mg_{1/3}Nb_{2/3})O_{3-x}PbTiO₃ (PMN-PT) Energy Harvester

Bin Yang*, Yanbo Zhu, Xingzhao Wang, Jingquan Liu and Chunsheng Yang

National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Micro and Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China

(Received January 8, 2014; accepted June 12, 2014)

Key words: d_{33} mode, energy harvester, bonding and grinding, MEMS

In this manuscript, a d_{33} mode piezoelectric micro-electromechanical systems (MEMS) energy harvester integrated with silicon proof mass, which is made of composite cantilever beams from a silicon layer and a single crystal PMN-PT thick film, is proposed. The silicon mass is fabricated by the deep-reactive ion etching (DRIE) process to reduce the resonant frequency for a matching ambient source. A PMN-PT film of 15 µm thickness is realized by the hybrid process of wafer bonding and grinding. The experimental results show that this fabricated prototype can generate a maximum output voltage of 1.18 $V_{\text{P-P}}$ and corresponding power of 0.139 µW at the resonant frequency of 200 Hz and vibration acceleration of 2 g.

*Corresponding author: e-mail: binyang@sjtu.edu.cn