Sensors and Materials, Vol. 26, No. 9 (2014) 649–663 MYU Tokyo

S & M 1031

Gas Sensing Properties and *In Situ* Diffuse Reflectance Infrared Fourier Transform Spectroscopy Study of Acetone Adsorption and Reactions on SnO₂ Films

Zhenxin Zhang¹, Kaijin Huang^{1,2,3,*}, Fangli Yuan² and Changsheng Xie¹

 ¹State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
²State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
³State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

(Received July 26, 2013; accepted February 10, 2014)

Key words: flat-type coplanar gas sensor arrays, acetone, SnO₂ films, in situ DRIFTS

 SnO_2 flat-type coplanar gas sensor arrays were fabricated by a screen-printing technique based on SnO_2 nanopowders prepared by a sol-gel method. The SnO_2 flat-type coplanar gas sensor arrays had good acetone gas-sensing characteristics such as a fast response, short recovery time, and an almost linear response to acetone concentration of 1–100 ppm. The response could reach 2.11 for acetone concentration as low as 1 ppm, and the response and recovery times for 1 ppm acetone were 8.9 and 10 s, respectively. The surface reactions were investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) at different temperatures, and a possible sensing mechanism was proposed. Formate, acetate, carbonate ions, $CH_3O_{(ads)}$, CO_2 , H_2O , and adsorbed acetone were detected when the SnO_2 flims were exposed to 100 ppm acetone at different temperatures.

*Corresponding author: e-mail: huangkaijin@hust.edu.cn